当前位置: 江南文明网 > 科技 >

OpenAI也缺GPU 降低成本是首要目标

条评论

OpenAI也缺GPU 降低成本是首要目标

SamAltman 的欧洲之行仍在进行中。前不久,在伦敦,他和 AI 公司 HumanLooop 的 CEO 进行了一次闭门讨论。HumanLoop 是一家帮助开发者在大语言模型上构建应用的公司。

HumanLoop 的 CEO Raza Habib 记录了这次谈话的要点,并公开在公司官网上。但随后在 OpenAI 的要求下,这份纪要被撤下。这反而增强了外界对这次谈话的好奇心。有人推测,是其中所涉及的 OpenAI 的一些想法有所更改。

极客公园在浏览了这份被删除的谈话纪要后,发现其中不仅涉及 Sam 眼中对 OpenAI 的短期规划,也隐藏着获得微软云计算资源大力支持后,OpenAI 所承担的压力。毕竟,模型的微调、推理依旧消耗大量计算资源。据 The Information 报道,Open AI 的模型已经花费了 Microsoft Azure 12 亿美元,将计算资源集中于支持 OpenAI,也让微软的其他部门可使用的服务器受限。

对此,Sam 表示降低成本是目前的首要目标。

此外,Sam 还透露:目前,开放更长的上下文窗口、提供微调 API 等服务都受到GPU资源的限制;

这场对话中,Sam Altman 回应了许多外界关心的问题,比如竞争与商业化:

尽管刚刚招聘了一位世界级的产品经理 Peter Deng,但 OpenAI 不会考虑发布更多的产品;

未来的应用趋势是大模型的功能嵌入更多APPs,而不是在ChatGPT上生长出更多插件,因为现实中大多数插件并没有呈现出 PMF(Product / Market Fit,即产品市场匹配);

过去几年,OpenAI 以数百万倍的速度扩展模型规模,但这样的速度不可持续。接下来,OpenAI 会继续以 1 到 3 倍的速度,增加模型规模,以提升模型性能。

谈话纪要公开于 5 月 29 日,根据网友的记录,于 6 月 3 日左右删除。以下是通过备份获得的内容:

01.OpenAI 目前受到GPU 的严重限制

随着对话扩展,所需的计算资源呈指数增长

目前 OpenAI 的 GPU 非常有限,这拖延了他们许多短期计划。客户最大的抱怨是 API 的可靠性和速度。Sam 承认他们的担忧,并解释说,大部分问题是由于 GPU 短缺。

The longer 32k context can』t yet be rolled out to more people. OpenAI haven』t overcome the O(n^2) scaling of attention and so whilst it seemed plausible they would have 100k - 1M token context windows soon (this year) anything bigger would require a research breakthrough.

更长的 32K 上下文还不能提供给更多的人。OpenAI 还没有克服注意力机制的 O (n ^ 2) 的扩展问题,尽管看起来,他们很快 (今年) 就会拥有 100k-1M Token 的上下文窗口。任何更大的窗口都需要研究突破。

注:O (n^2) 意味着,随着序列长度的增加,执行 Attention 计算所需的计算资源呈指数增长。O 用来描述算法时间或空间复杂度增长速度的上限或最坏情况;(n^2)表示复杂度与输入大小的平方成正比。

微调 API 目前也受到 GPU 可用性的限制。他们还没有使用像 Adapters 或 LoRa 这样的高效微调方法,因此,通过微调进行运行和管理(模型)非常计算密集。未来将对微调提供更好的支持。他们甚至可能主持一个基于社区的模型贡献市场。

专用容量供应受 GPU 可用性的限制。OpenAI 提供专用容量,为客户提供模型的私有副本。要获得这项服务,客户必须愿意承诺预先支付 10 万美元。