当前位置: 江南文明网 > 科技 >

未掺杂下的LK-99是顺磁莫特绝缘体,掺杂或许会导致室温超导

条评论

未掺杂下的LK-99是顺磁莫特绝缘体,掺杂或许会导致室温超导

自从韩国学者在预印本平台 arXiv 发表关于“室温超导”的相关论文以来,立刻在凝聚态领域尤其是在超导研究领域引起了极大的关注。

针对韩国学者的论文(下称“韩国论文”)提出的 LK-99 材料,中国西北大学物理学院教授分析了它的晶体结构,并构建了化学组分[Pb 9 Cu(P O 4 ) 6 O]可能具有的晶体模型。

 

对于不同结构的晶体模型来说,它们之间可能存在一些实验上很难表征的细微差别。但是,这些晶体结构上的细微差距,或许会对 LK-99 的物理性质产生重要影响。

在 的研究中,他和合作者通过理论计算方法,分析了这些潜在晶体结构的稳定性,并对其基态晶体结构予以确定。

通过理论模拟的方法,他们研究并分析了 LK-99 的电子结构特征,推断未掺杂的 LK-99 的基态很可能是(顺磁)莫特绝缘体。当 LK-99 被电子或者空穴掺杂的情况下,可能表现出超导态。目前已有的实验中观测到的悬浮性,很大可能是来源于样品的超导态。

这种在实验中难以细微调控的掺杂效应及其带来的影响,或许也能针对下述现象做出解释:即在目前多个实验团队的报道中,有些团队的结论是 LK-99 是绝缘体,而有些团队的结论 LK-99 是金属甚至于是超导态。

从目前的理论结果来看,在无掺杂的情况下 LK-99 体系将是莫特绝缘体。因此,无论是电子还是空穴掺杂,都将导致从绝缘体到金属的转变。在实验上,这可以通过调整各个元素的浓度来实现。除此之外,样品中多余的氧原子或者残留的硫原子,也可以引入掺杂效应与金属相变。

表示:“我们发现这个‘额外’的氧虽然与铜离子在实空间中的距离比较远,但是它们在能量上比较接近,进而可以形成铜氧杂化。”

那么,用硫(S)代替磷(P)或氧(O)会有更好的效果吗?对此, 表示:“硫最外层具有 6 个价电子,从这个角度来说它跟氧是类似的,因此存在替换的可能性。如果体系中如果引入额外的硫元素,或者引入硫来取代磷,将会引入额外的空穴或者电子掺杂,理论上来说,会导致金属态甚至可能导致超导态的产生。”

值得一提的是,在已经得到广泛研究的铜氧化物高温超导体中,铜氧之间的轨道杂化,对于超导电子结构的形成同样非常重要,它们会导致铜氧化物高温超导体中电荷转移绝缘态的形成。因为, 认为这类“额外”的氧可能扮演非常重要的角色。

至于空穴和电子掺杂哪个将表现更好?目前还无法给出解答,只能等待后续的理论研究和实验研究来回答。

另外,什么是莫特绝缘体?其能带结构具有什么特点?莫特绝缘体是一类具有由电子强关联效应驱动的绝缘体态的材料总称。针对它的研究起源于 20 世纪 70 年代,当时有两位科学家发现很多在能带理论计算中被预测为金属的材料,在实验中表现为绝缘体,这说明其中有当时尚未被发现的物理自由度。