4000到40万token,大模型正在以“肉眼可见”的速度越变越“长”。
长文本能力似乎成为象征着大模型厂商出手的又一新“标配”。
国外,OpenAI经过三次升级,GPT-3.5上下文输入长度从4千增长至1.6万token,GPT-4从8千增长至3.2万token(token:模型输入和输出的基本单位);OpenAI最强竞争对手Anthropic一次性将上下文长度打到了10万token;LongLLaMA将上下文的长度扩展到25.6万token,甚至更多。
国内,光锥智能获悉,大模型初创公司月之暗面发布智能助手产品Kimi Chat可支持输入20万汉字,按OpenAI的计算标准约为40万token;港中文贾佳亚团队联合MIT发布的新技术LongLoRA,可将7B模型的文本长度拓展到10万token,70B模型的文本长度拓展到3.2万token。
据光锥智能不完全统计,目前,国内外已有OpenAI、Anthropic、Meta、月之暗面等一大批顶级的大模型技术公司、机构和团队将对上下文长度的拓展作为更新升级的重点。
毫无例外,这些国内外大模型公司或机构都是资本市场热捧的“当红炸子鸡”。
OpenAI自不必说,大模型Top级明星研究机构,斩获投资近120亿美元,拿走了美国生成式AI领域60%的融资;Anthropic近期风头正盛,接连被曝亚马逊、谷歌投资消息,前后相差不过几天,估值有望达到300亿美元,较3月份翻五番;成立仅半年的月之暗面出道即巅峰,一成立就迅速完成首轮融资,获得红杉、真格、今日资本、monolith等一线VC的押注,市场估值已超过3亿美元,而后,红杉孵化式支持,循序完成两轮共计近20亿元融资。
大模型公司铆足劲攻克长文本技术,上下文本长度扩大100倍意味着什么?
表面上看是可输入的文本长度越来越长,阅读能力越来越强。
若将抽象的token值量化,GPT-3.5的4000 token最多只能输入3000个英文单词或者2000个汉字,连一篇公众号文章都难以读完;3.2万token的GPT-4达到了阅读一篇短篇小说的程度;10万token的Claude可输入约7.5万个单词,仅22秒就可以阅读完一本《了不起的盖茨比》;40万token的Kimi Chat支持输入20万汉字,阅读一本长篇巨著。