当前位置: 江南文明网 > 科技 > 智能 >

大模型做通用or垂直?

条评论

大模型做通用or垂直?

基于目标人群、用途和适用场景的不同,大模型市场可分为通用大模型和垂直大模型两大类。

通用大模型,聚焦基础层,以技术攻关为目的。他们对标ChatGPT做通用大模型,百度的文心一言,阿里的通义千问、科大讯飞的星火大模型等都归属这一类。

垂直大模型,聚焦解决垂直领域问题,以产品开发为目的。他们在通用大模型基础上训练行业专用模型,应用到金融、医疗、教育、养老、交通等垂直行业。

通用大模型的长处聚焦于一个“广”字,面向人群以及场景适用范围十分广泛。

但对于特定场景而言,企业并不需要通用大模型的“全能”能力,更多需要的是模型的精度和质量。

垂直大模型以此为切入点,选择了另一条路径。他们以具备的行业知识为基础,通过与通用大模型企业合作的方式,训练行业专用模型。

“站在客户角度,行业客户最为看重的是定制化的需求,以及AI企业的工程化落地能力。”众数信科CEO吴炳坤对雷峰网说。

作为垂直大模型的一员,众数信科成立于2021年初,由云从科技、厦门火炬创投、民生电商发起成立。

众数信科定位AIGC领域的“知识智能化”,即将数字城市领域沉淀的行业数据、专家经验,通过AI 技术进行工程化。

简单理解,众数信科只做一件事,即将AI 大模型微调为行业专用模型,帮助行业提升效率。

在吴炳坤看来,做行业的垂直大模型,同样存在巨大的商业价值。

通用大模型门槛高企,初创公司在垂直大模型寻找机会

过去几年,商业化一直是困扰整个人工智能行业的难题,大模型的出现让AI商业化看到了新机会。

吴炳坤将AI比作工业时代的石油钻机:“没有钻井机,石油就无法成为工业时代的黑色血液;数据要素时代,没有AI,数据的价值也就得不到充分挖掘。现在大模型带来了无限的想象和发展机会。”

两年前,在数字城市领域,AI更多基于小模型,比如算法只做人脸识别,或只做车牌识别,产品受限很大,研发成本很高,可以扩展的空间不多。

现在,随着 AI 大模型这一关键技术的突破,数据和AI的结合度更加紧密,上述问题都得以突破。

大模型将对全行业都产生颠覆性地重构,已经是业界共识。百度李彦宏、阿里张勇等不少业界大佬都在不同场合,不断重复同样一句话:AI 大模型时代,每个行业的应用都值得重新做一遍。

从目前国内扎堆发布的大模型来看,基础大模型的技术创新,更多是大公司的角斗场。

阿里巴巴张勇曾指出,超万亿参数的大模型研发是一场“AI+云计算”的全方位竞争,囊括了算法、底层庞大算力、网络、大数据、机器学习等诸多领域,是一项复杂的系统性工程。