围绕虎嗅2023工业AI大会,虎嗅将推出工业制造领域系列内容精选,此篇为第二篇。
以下核心观点和内容来自于虎嗅智库发布的《工业数据采集落地洞察报告》,点击报告名称获取内容。
核心观点: 1.工业数据采集根据不同行业、不同企业业务,其落地侧重点和部署策略均有所不同,不能盲目模仿; 2.落地部署过程中,非技术层面的问题相比技术层面问题更加棘手; 3.工业数据采集应遵循“应采尽采”的原则,但前提是明确自身业务目标范围。
在工业大数据流转全链路中,数据采集是第一步,是进行后续数据处理、分析、计算和应用等环节的基础。数据作为新型生产要素,是工业企业驱动数据智能的“燃料”,而数据采集的工作则是为企业持续补充高质量燃料,助推企业的数字化转型的关键点。
全面性、准确性、及时性和实时性是工业数据应具备的四大特性。企业数字化转型需要围绕数据才能展开,数据采集工作所能实现这四大特性的程度也决定了企业数字化转型成败。
从宏观层面,数据采集能够为企业提供智能化决策的数据依据,优化企业的管理和运营;另一方面,能够在原有的信息化基础之上,把从研发、生产和服务过程中与企业相关的人员、设备、工艺等要素进行更精细化和标准化地梳理,进一步夯实数字化转型工作。
工业数据采集需求的“千人千面”
工业数据采集的工作大致由“数据收集”和“协议解析”两部分构成。
数据收集主要是通过生产设备内置的采集装置、传感器等硬件或工控系统、SCADA等软件系统,将生产作业过程中产生的各类数据采集至设备或系统中;协议解析则是通过对数据采集软硬件内置的数据协议进行解析“翻译”,来请求获取采集上来的数据,并进行传输。
国内工业领域范畴非常广泛,当前对于各个行业的生产自动化、流程自动化或者无人工厂来说,数据采集是刚需。但根据所处行业的不同,不同类型的企业对于数据的业务需求有所差异,所以对数据采集工作的细分需求也会存在侧重点。
从制造业属性来看,通常流程类企业会更加注重采集的工作,离散类企业则更加关注协议解析。
石油化工、钢铁冶金、能源电力等流程类行业,特点是生产线长、业务规模大,产生的数据量非常庞大。企业需要在各个生产环节,从众多设备和各类分布式控制系统中进行数据采集,利用大规模的数据来支持设备的故障排查诊断和智能决策,避免因故障停产。但同时,流程类场景下的数据协议相对单一,故需求更多集中在“数据收集”环节。